
Integrating Domain Specific Modeling in Model-Based Testing
1Satyapal reddy Regenti and 2Dr. R.J. Rama Sree

1Department of Computer Science, JBICT, Tirupati-517 501, A.P., India.
regentisatyareddy@yahoo.com

2Department of Computer Science, Rashtriya Sanskrit Vidyapeetha, Tirupati-517 502, A.P., India.
rjramasree@yahoo.com

ABSTRACT - Model-Based Testing is a test
automation technique that generates test cases based
on a model of the system under test. Domain-specific
modeling is a modeling approach where the developed
system is modeled in terms of domain-specific
concepts and these models are automatically
transformed to other forms such as application code.
In this paper, we will discuss the adoption and
integration of domain-specific modeling with model-
based testing tools. Since model-based testing tools
utilise various modeling notations that typically
diverge from a specific domain-model, we will discuss
how domain specific models can be automatically
transformed to become suitable models for a chosen
model-based testing tool. Furthermore, by doing this
in terms of a domain-specific meta-model, we will
allow one to switch between various model-based
testing tools.

Keywords - domain-specific modeling; model-based
testing; meta-model

1. INTRODUCTION
Model-based testing (MBT) is a growing trend in

test automation. In MBT, the system under test is
modeled at a suitable abstraction level for testing, and
tools are used to automatically generate test cases based
on this model. Given a set of suitable tools and
methods, MBT has been shown to be a useful and
effective means for high-level testing in different
domains [1,2]. Some advantages include reduced
maintenance costs in focusing on a single high-level
model, and increased test coverage over the aspects
expressed in the test model via the means of automated
test generation.

Most of the current MBT tools are general purpose
MBT tools, focusing on generic models of software
behaviour, such as finite state-machines [3]. However,
each MBT tool applies its own specific modeling
notation, which prevents the application of test models
across different MBT tools. This also presents the
problem of choosing a suitable MBT tool based on the
different needs, such as suitable modeling notation,
price, and other features [4,5]. On the other hand,
domain specific modeling (DSM) provides the means
for expressing domain concepts in a high-level model

and for transforming these models to other formats. The
typical usage of DSM is to model the target system and
to generate the application code itself from these
models. Typically, DSM models are self-made and
controlled languages, which make them cost-effective
and efficient in a suitable context.

It has proven difficult to re-use MBT approaches
and test models over different projects due to their
domain-specific properties [4]. The test model is made
to express the system under test (SUT), which requires
the domain concepts in the model to be expressed. As
such, they can only be used for specific purposes and
are already linked to the specific needs of the target
domain, although expressed in general modeling
languages such as state-machines. In this paper, we will
describe an approach for integrating and adapting DSM
for use with MBT tools and techniques. We will show
how test models expressed in the terms of domain-
specific modeling can be used to provide the form of a
domain-specific meta-model for the various MBT tools,
focusing on the domain specific aspects of the target
system. From this domain specific model, we will show
how suitable models can be generated for different
MBT tools, enabling the use of DSM concepts with
model-based testing tools. Our approach also permits
addressing the need to be able to switch between
various MBT tools according to various needs during a
project lifecycle.

2. BACKGROUND
2.1 Model-Based Testing

Model-based testing is a testing technique aimed to
automate test generation from a model which describes
a relevant aspect of SUT behaviour. That is, the model
describes the SUT from the viewpoint of what needs to
be tested.

MBT contains three main parts: modeling, test
generation and test execution [3]. These main parts are
presented in Figure 1. The model is the primary source
of information for the test generator that generates test
cases. To be effective, this model has to contain
relevant data, but it also needs to be described at a
suitably high abstraction level. These models are
defined in various formats by the different MBT tools,
and some come with their own modeling tool. The most

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

26 ISSN : 0975-8283

typical type of modeling language uses some form of
state machine extended with a programming language.
This state machine typically encodes the program state
and the programming language is used to describe the
expected output data as well as the possible input data.

MBT tools use different test generation algorithms
to generate test cases based on the provided model and
the given test generation attributes. Test generation
attributes are normal parameters for test execution
algorithms, i.e., coverage criteria, test case length and
calculation depth.

Figure 1. Model-Based Testing overview.

The MBT tools can produce the generated test
cases in different formats. The tools typically have a
plug-in architecture for writing test script generators, or
provide off-the-shelf generators producing an easy-to-
parse format for test case export. Flexible test case
formatting is valuable, in order to allow one to make
use of existing test execution platforms in executing the
generated test scripts. Finally, when test scripts have
been generated in a suitable format, they can be
executed and the test executor will generate a report on
the test results.

Several different MBT tools exist, and all of these
have some significant differences [5]. This paper is
focused on enabling one to change MBT tools during a
product lifecycle. Some of the major motivations for
why one might want to change a MBT tool include the
use of different test generation algorithms for a more
comprehensive test generation and model analysis, and
an enhanced off-the-shelf support for different output
formats. On the other hand, a major constraint in
choosing a specific tool can be the offered pricing and
licensing. We will identify the three main types of
licensing: commercial, open source and self-made.

Commercial MBT tools naturally have the best
support available, while they also typically come with
more sophisticated interfaces for model importing and
editing, and provide support for test case exports. For
various reasons, one may also wish to avoid licensing
payments, to have the ability to customize the tool, or to

be able to more easily share models with different
partners. These are examples of cases where an open
source solution might be a better choice. There are
already several open source MBT tools available that
have reached a suitable maturity level to be considered
to be useful. While these tools may not be as
sophisticated as commercial tools, they are sufficient
enough for many cases, especially when beginning to
adopt the MBT testing process. The final type which is
discussed here is an in-house MBT tool that has been
especially developed for specific needs and purposes,
such as a specialized problem domain. In such a case,
the most natural solution is to build the MBT tool by
oneself.

2.2 Domain-Specific Modeling
Domain-specific modeling can be defined as using

models to raise the level of abstraction beyond
programming, by directly specifying the solution using
domain concepts [6]. The actual product that is being
developed is then generated from these high-level
domain models. The automated generation of the
product (code) from the domain model is possible as
both the language and generators can be defined to fit
the requirements of only one company and domain. The
process of applying DSM can be split into two main
parts, where the expert first defines the domain specific
modeling concepts and implements the DSM modeling
tools that enable the developers to use them in
modeling and thus also in the building of the actual
products themselves.

These two steps can be further decomposed into
four main phases:

• metamodeling
• modeling
• code generation
• framework

In the meta modeling phase, the modeling language
is created. A metamodel is defined, which specifies a
modeling language that can be used to express domain
concepts as a basis for code generation. The metamodel
defines the DSM language, but can also define
restrictions concerning its application, and may also
include a graphical view for visualizing the defined
models. A well defined language is necessary for
effective code generation. The modeling phase is about
tranforming the informal application description (e.g.
from a natural language specification) into a model in
terms of the DSM language defined in the meta
modeling phase. As the model is built based on domain
concepts, it should – when done well – enable non-
developers to create the models. In the code generation
phase, the DSM model created in the modeling phase is
transformed into another format. Generic code

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 27

generation from a generic model (such as a state-
machine) for any application can be seen as an
impractical goal due to the adaptation that it would
require. DSM is most effective when the metamodel is
made for a limited domain and, therefore, the code
generation also needs to be only suitable for that
specific domain.

Code generation from a DSM is typically made on
a platform. The platform is the more stable part of the
code that does not change between the applications.
The use of a platform makes the code generation
process lighter as it reduces the amount of the code that
needs to be generated for each domain application. The
cost-effectiveness of DSM is at its best when several
applications need to be built for the same domain with
some variance, such as a product family.

2.3 Related research
Katara et al [7] have used DSM to make MBT

easier to adopt in an industrial context. While they
focused on providing a more effective modeling
language, in this paper we will focus more on making
use of the benefits of DSM in the scope of MBT. This
also means providing more effective modeling
languages (as domain specific meta-models), whilst
also supporting different tools through these DSM test
models. We have previously used MBT for automating
the testing of DSM application models and metamodels
[8,9]. In those studies, we focused on integrating MBT
into the DSM development workflow. In this paper, we
will aim to bring the DSM benefits into the MBT
process, to allow one to evolve their MBT process more
easily and effectively.

3. INTEGRATING DOMAIN-SPECIFIC
MODELING IN MODEL-BASED TESTING
Our objective in integrating DSM with MBT is to

make use of the advantages of DSM in the MBT
domain, allowing the use of specific DSM models
across different tools, as opposed to having a specific
modeling language which is different for each tool. We
can see several advantages in this, in providing a more
natural means for reasoning about the systems using a
language which is tailored to their domain concepts,
mitigating the impact of the constraints and enabling
one to make better use of the advantages of the various
MBT tools. In our approach, a DSM language is used to
describe the tested application, based on the domain
meta-model. From this domain specific application test
model, a test generator is used to generate a suitable
model for the MBT tool of choice. Figure 2 shows an
overview of our approach. In the following, we will
describe this approach in more detail.

Figure 2. Model-based testing with domain-specific

modeling.

In the following, we will describe the application of our
approach in the form of two main steps:
• Model the tested application in terms of DSM, to

produce a DSM test model.

• Use a specific model transformation from the DSM
test model into a suitable model format for the test
generator (TG) of a chosen MBT tool.

At first, the modeling language is created following
DSML principles [6]. The key issue to take care of here
is that the model needs to be able to describe the SUT
domain using its concepts. The general idea of DSM is
to model the application domain in the terms of its own
concepts, at a high abstraction level. Similarly, the
models used in MBT are also typically defined at a high
abstraction level [3], providing a good fit for the two
different models. As this DSM test modeling phase is
similar to general DSM modeling, we will not go into
the details here. A relevant consideration is the relation
of the DSML used to describe the test model vs. the
tested implementation. In many cases, it is not optimal
to use the same models for testing as are used for
implementation.

As mentioned above, in our approach, we would
like to generate a suitable test model to be provided as
an input for the test generators of different MBT tools.
To do this, we need to have a specific code generation
phase in the DSM process, where, instead of application
code, we generate model code for the MBT tool of
choice. The specific advantages provided by this
approach are the following:

• It allows for the selection of a used test generator
from a single model, while

• making the change of a test generator a light-
weight process, and

• enables simultaneous use of different test
generators, e.g. open-source, commercial or self-
made.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

28 ISSN : 0975-8283

DSM has the potential to hide the complexity of
various MBT tools, as it uses domain concepts in
modeling. This enables non-programmers to create
models for testing, and also enables one to use them for
other purposes such as documents in themselves or as a
basis for document generation. Here, one relevant
consideration is the ability of a versatile DSML to
express concepts which are not available in all MBT
tools. In our approach, this is mitigated by the support
for generating suitable test models for different MBT
tools, allowing one to switch to a more advanced tool
without losing the investment into existing models.
However, these limitations need to be considered in
creating the models, model transformers, and in
choosing a suitable MBT tool.

4. CASE STUDY
In this section, we will present a case study where

we have applied our approach to test generation for a
(SIP) application. In this case study, we created a DSM
meta-model using the MetaEdit+ tool. Using this meta-
model as a basis, we created a DSM test model
describing the SIP protocol. From this model, we
generated suitable test models for three different MBT
tools: Conformiq Qtronic, ModelJUnit, and our own
custom-made test generation tool. These tools represent
the three types of tools described in section 2.1.
Conformiq Qtronic is a commercial MBT tool,
ModelJUnit is an open-source MBT tool, and the
custom-made tool is our own self-made MBT tool. An
overview of the different components is shown in
Figure 3. In each case, the final objective was to
generate TTCN-3 test scripts from the test model using
the MBT tool. TTCN-3 is a widely used test script
language for the telecommunication domain.

In the following subsections, we will first present
the basics of the SIP protocol and our DSM model for
describing it, followed by the description of the various
MBT tools used in our case study. Along with the
description of each MBT tool, we will also describe our
experiences in generating the test model for the tool
from our DSM model.

Figure 3. The components of our case study.

4.1 Session Initiation Protocol
SIP is a communication initiation protocol that is

used in, for example, IP phone call initiation. SIP is
also suitable for various other media connections, such
as video calls.

Figure 4 shows a case for initiating a multimedia
session between A and B, using the SIP protocol [10].
First, A sends an INVITE message to B. Next, B
responds with three messages: 100 Trying, 180 Ringing
and 200 OK. A confirms the correctness of the
initilization sequence by sending an ACK message and
following this, a multimedia session starts. B ends the
session by sending a BYE message and A accepts this
by sending a 200 OK message.

Figure 4. SIP example

Figure 5 shows an example model of the SIP DSM
language that we have created using MetaEdit+. The
idea of the SIP modeling language is to make SIP
message based modeling as easy as possible. Our
language is a variation of a state machine, but extended
with the domain concepts of SIP, as visible in the
model.

States do not have any functionality in this
language. All of the functionality is embedded in the
state transitions. Transitions have trigger, guard, action,
response and requirement fields. A trigger in this model
is basically a message from the test executor to the
system under testing (SUT). A transition guard defines
a condition that must be fulfilled before the transition
can take place. An action is a piece of code that is
executed in response to a transition being taken. Our
DSM language only supports code that performs
actions on the variables of the model in a standard way,
allowing it to be added directly to the transformed
model.

A response defines an expected output in terms of a
message that is expected to be received from the SUT
to the test executor. The requirement field defines a
string value that is tagged to the A part of the model
and later used in test cases to define at which point a

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 29

specific test requirement is covered by the test
generator algorithm.

Figure 5. SIP language in MetaEdit+

Trigger and Response (TR) fields are objects which
include several different fields of various types. All of
the other fields are transformed into single variables in
string format. TR fields are objects, as a SIP message
has several fields and the test model needs to model the
changing fields. Thus, while the test model does not
need to model all the fields of the SIP protocol, it does
need to model the changing fields. If the set of
changing fields evolves, the modeling language can be
changed accordingly by creating a new object or
changing the fields in the existing objects for trigger
and response.

4.2 ModelJUnit
ModelJUnit is a Java based MBT tool. In

ModelJUnit, the test model is defined as a Java class.
The states and transitions are encoded in the class file,
using the Java programming language with specific
naming conventions for naming and the Java annotation
functions to define the state transition functions as well
as the guard statements for when a transition is allowed
to be taken. Transition triggers, the test script generator
and all other extra features are also programmed in the
standard Java notation. This case is illustrated in figure
6.

Figure 6. The ModelJUnit generator.

In this case, we created a code generator which
transformed DSM models defined in the SIP modeling
language to the format of the ModelJUnit Java classes.
By executing the ModelJUnit tool with these models as
input, we generated TTCN-3 test scripts.

4.3 Conformiq Qtronic
Conformiq Qtronic (CQ) is a commercial MBT

tool. CQ uses a UML state machine extended with a
variant of the Java programming language as model
input language. CQ incorporates its own modeller for
state machines, and also supports importing models
created in other tools when they are available in a
compatible XMI format. CQ has a graphical user
interface and is integrated with the Eclipse development
environment. It also incorporates various algorithms
with tuneable parameters to allow for extensive test
generation. CQ has an interface for creating test code
generator plug-ins and also includes a couple of off-the-
shelf existing plug-ins.

The components of the CQ use case are presented
in figure 7. First, we created a CQ code generator to
perform the model transformation from our DSM SIP
language to the format (XMI+ Java) accepted as input
by the CQ tool. We then applied the CQ test generation
tool based on this model, and used the off-the-shelf
TTCN-3 test generator plugin provided with the CQ to
create a set of TTCN-3 test cases from the test model.

Figure 7. The Conformiq Qtronic generator.

5. DISCUSSION
In this section, we will discuss the preliminary

results of our experiments in applying the approach of
using DSM as a basis for MBT. Overall, our experience
was that the DSM concepts can be applied usefully to
produce effective models for MBT. Thus, we believe
that significant gains can be achieved with this
approach. Based on the three case studies that we
performed, it can also be said that in these cases the
approach was found to perform well and we were able
to generate useful test models for the three different
MBT tools. For us, this also highlights the usefulness of
the approach based on our previous experiences in
applying MBT tools in various contexts.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

30 ISSN : 0975-8283

For example, we have found ModelJUnit to
perform well in basic test modeling and test generation.
However, it lacks in diversity in the availability of more
advanced functions, while it does allow for an extensive
customization of the tool itself, where needed, due to its
open-source nature. On the other hand, Conformiq
Qtronic is a versatile commercial tool with well defined
and extensive interfaces and algorithms.

Overall, it can be said that our viewpoint enables
one to start experimenting with MBT through the use of
DSM. In this way, it is possible to start the experiments
with the help of free open-source tools algorithm. After
these initial experiments, it is then possible to move to a
different test generation approach, such as a
commercial MBT tool. By providing the mapping of
the DSM model to the various MBT tool models
through the different test generators, it is possible to
perform this switch while maintaining the investments
and lessons learned in the modeling done in the initial
phases. Some benefits can be observed in applying the
different options and algorithms offered by the various
tools. For example, one may make the transition to a
commercial tool due to the more powerful and
extensive algorithms and the other options available as
needs are observed during project lifecycle.

Some cost-effectiveness trade-offs can be observed
in having to first create the DSM meta-language for
expressing the suitable test models for the target
domain. Similarly, creating the test model generators
needed for creating the DSM model for MBT model
transformation is another factor to be considered.
However, these are similar tradeoffs that need to be
considered in taking DSM into use in general. Thus the
general considerations for the cost-effectiveness of
DSM application can be seen as relevant.

To mitigate some of these tradeoffs, some possible
solutions can be seen in providing generic parts of a
meta-model that can be used for creating suitable DSM
languages for MBT. Also, when a test model generator
is available for a given domain, it can be used with the
different models for that MBT tool, and thus it only
needs to be implemented once per domain.

Another point to consider as a potential benefit is
that of using the different models and their related
transformations as a basis for handling the aspects of
traceability between the different points in the software
development lifecycle. When explicit transformations
are made from DSM models to test models, it is
possible to also generate documentation for which parts
of the domain model are covered by which test cases
and how. As the domain test model will also describe
the system in the terms of its domain concepts, it can
also be used as a part of the documentation for the
system itself. Similar considerations may also apply for

the generated MBT models and any extra tools
available for these tools to make use of their test
models. The addressing of these questions in detail
provides interesting research questions for future work.

6. CONCLUSION
In this paper, we have described the concept of

using DSM to enable more effective use of different
MBT tools as well as the advantages of DSM concepts
in connection with MBT techniques. We also described
the initial results from our implementation of this
concept. For future work, we will look to implement
and evaluate the approach on a larger scale.

7. REFERENCES
1. Grieskamp, W., Kicillof, N., Stobie, K., and Braberman,

V., “Model-Based Quality Assurance of Protocol
Documentation: Tools and Methodology”, Journal of
Software Testing, Verification and Reliability,2010.

2. Miller, T. and Strooper, P., “A Case Study in Model-
Based Testing of Specifications and Implementations”.
Journal of Software Testing, Verification and
Reliability,2010.

3. Utting, M. and Legeard, B. 2006. “Practical Model
Based Testing: A Tools Approach”, Morgan Kaufmann
1st ed., ISBN: 978-0123725011, 456p.

4. Dias-Neto, A. and Travassos, G., “Model-based testing
approaches selection for software projects:, Information
and Software Technology, PP.1487-1504,2009.

5. Puolitaival, O.P., Luo, M., Kanstren T., “On the
Properties and Selection of Model-Based Testing tool
and Technique”, 1st Workshop on Model-based Testing
in Practice, MoTiP 2008, June, 2008 – Berlin, Germany.

6. Kelly, S., Tolvanen, J.P., “Domain-Specific Modeling:
enabling full code generation”, Wiley, 2008.

7. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T.
and Satama, M., “Towards Deploying Model-Based
Testing with a Domain-Specific Modeling Approach,”
IEEE Computer Society, Windsor, UK, 2006.

8. Merilinna, J., Puolitaival, O.P., Pärssinen, J., “Towards
Model-Based Testing of Domain-Specific Modeling
Languages”, 8th OOPSLA Workshop on Domain-
Specific Modeling. Nashville, USA, PP.19 - 20 Oct.
2008. Tennessee, USA, 2008.

9. Merilinna, J., Puolitaival, O.P., “Using model-based
testing for testing application models in the context of
domain-specific modeling”, The 9th OOPSLA
Workshop on Domain-Specific Modeling. Orlando, FL,
USA, PP.25-26, 2009.

10. RFC 3261 - SIP: “Session Initiation Protocol,” 2010,
URL: http://tools.ietf.org/html/rfc3261 [Visited at
10.8.2010]

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 31

